Geometric Metric Learning for Multi-Output Learning
نویسندگان
چکیده
Due to its wide applications, multi-output learning that predicts multiple output values for a single input at the same time is becoming more and attractive. As one of most popular frameworks dealing with learning, performance k-nearest neighbor (kNN) algorithm mainly depends on metric used compute distance between different instances. In this paper, we propose novel cost-weighted geometric mean method learning. Specifically, learns which can make embedding correct be smaller than outputs nearest neighbors. The learned discover dependencies move instances far away in space. addition, our objective function has closed solution, thus calculation speed very fast. Compared state-of-the-art methods, it easier explain also faster speed. Experiments conducted two tasks (i.e., multi-label classification multi-objective regression) have confirmed provides better results methods.
منابع مشابه
Geometric Mean Metric Learning
We revisit the task of learning a Euclidean metric from data. We approach this problem from first principles and formulate it as a surprisingly simple optimization problem. Indeed, our formulation even admits a closed form solution. This solution possesses several very attractive properties: (i) an innate geometric appeal through the Riemannian geometry of positive definite matrices; (ii) ease ...
متن کاملOutput Regularized Metric Learning with Side Information
Distance metric learning has been widely investigated in machine learning and information retrieval. In this paper, we study a particular content-based image retrieval application of learning distance metrics from historical relevance feedback log data, which leads to a novel scenario called collaborative image retrieval. The log data provide the side information expressed as relevance judgemen...
متن کاملA Geometric take on Metric Learning
Multi-metric learning techniques learn local metric tensors in different parts of a feature space. With such an approach, even simple classifiers can be competitive with the state-of-the-art because the distance measure locally adapts to the structure of the data. The learned distance measure is, however, non-metric, which has prevented multi-metric learning from generalizing to tasks such as d...
متن کاملMulti-Modal Distance Metric Learning
Multi-modal data is dramatically increasing with the fast growth of social media. Learning a good distance measure for data with multiple modalities is of vital importance for many applications, including retrieval, clustering, classification and recommendation. In this paper, we propose an effective and scalable multi-modal distance metric learning framework. Based on the multi-wing harmonium ...
متن کاملDeep metric learning for multi-labelled radiographs
Many radiological studies can reveal the presence of several co-existing abnormalities, each one represented by a distinct visual pattern. In this article we address the problem of learning a distance metric for plain radiographs that captures a notion of “radiological similarity”: two chest radiographs are considered to be similar if they share similar abnormalities. Deep convolutional neural ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematics
سال: 2022
ISSN: ['2227-7390']
DOI: https://doi.org/10.3390/math10101632